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ABSTRACT
Statisticians are in general agreement that there are flaws in how science is currently practiced; there is less
agreement in how to make repairs. Our prescription for a Post-p< 0.05 Era is to develop and teach courses
that expand our view of what constitutes the domain of statistics and thereby bridge undergraduate statis-
tics coursework and the graduate student experience of applying statistics in research. Such courses can
speed up the process of gaining statistical wisdom by giving students insight into the human propensity to
make statistical errors, the meaning of a single test within a research project, ways in which p-values work
and don’t work as expected, the role of statistics in the lifecycle of science, and best practices for statistical
communication. The course we have developed follows the story of how we use data to understand the
world, leveraging simulation-based approaches to perform customized analyses and evaluate the behavior
of statistical procedures. We provide ideas for expanding beyond the traditional classroom, two example
activities, and a course syllabus as well as the set of statistical best practices for creating and consuming
scientific information that we develop during the course.

1. A Prescription for a Post-p<0.05 Era: Teach
Statistical Wisdom

Statisticians and others are in general agreement that the cur-
rent system of curating scientific knowledge is flawed (Sterne
and Smith 2001; Leek and Peng 2015; Wasserstein and Lazar
2016). In fact, 90% of 1576 researchers surveyed agreed that
there is a crisis in reproducibility in science with more than
half agreeing that it is a major crisis (Baker 2016). There are
concerns about scientists’ inability to replicate published results
and the cost to society of an ineffective scientific process. To
identify just a sample of the issues underlying these sentiments:
questions are poorly formulated, too many tests are conducted,
p-values are overvalued or misinterpreted altogether, and the
peer-review process is overwhelmed. There is a pressing need to
move statistical analysis and evidence-based decision making
beyond the current system of overtesting and underthinking.

There is less agreement among statisticians on exactly how to
repair our scientific machinery. Some promote alternative sys-
tems of assessing statistical significance, for example, p< 0.005,
(Benjamin et al. 2018) or of evaluating information, for example,
Bayesian methods (e.g., Johnson 2013). Some statisticians pro-
mote changes to the publication process (e.g. Sterne and Smith
2001) such as preregistration, preacceptance of study designs,
and publication of negative results. Still others promote shifts
in the way we evaluate scientists themselves with emphasis on
quality of scientific work rather than quantity of high-ranking
publications (e.g., Martinson 2017).

We follow on a proposal from Brown and Kass (2009) to
expand our view of what constitutes statistical training. In
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fact, we believe that the domain of statistics includes not only
calculations but also the beginning of the scientific process,
for example, asking a clear question and tying it correctly to
analytical methods, and the end of the scientific process, for
example, communicating results to the general public, as well
as all the steps in-between. If the problem is a flawed system of
curating scientific knowledge, in which p-values have played a
leading role, our prescription for a Post-p< 0.05 Era is to equip
students with a clear understanding of the opportunities and
pitfalls in the application of statistics within that entire system.

We propose that there are opportunities to build a more
efficient and effective knowledge supply chain. The wisdom
necessary to identify and avoid common statistical mistakes or
to understand flaws in the scientific process is generally arrived
at through years, if not decades, of experience with data analysis,
repeated exposure to common statistical errors and, long-term
observation of the publication process. Instead of waiting for
this wisdom to be accumulated, we could engage purposefully in
teaching this statistical understanding to graduating statisticians
and new researchers. In the previously mentioned poll on the
reproducibility crisis, the number one factor needed for boost-
ing reproducibility in science, cited by just over 50% of those
surveyed, was “better understanding of statistics.” (Baker 2016).

In this article, we begin by outlining the history of efforts to
improve teaching of statistical thinking and by describing the
current atmosphere of opportunity for making an impact. We
then explain the structure and unique features of our course
for advanced undergraduate statistics majors and early graduate
students from any discipline. Our course is explicitly designed
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to teach students why statistical thinking can be challenging;
what common errors are and how they can be avoided; how
a single statistical analysis fits into the larger supply-chain of
knowledge; how errors can be induced from mismatched data
summaries and research questions; what p-values are and how
they are often misused; and what the responsibilities of scien-
tists, including statisticians, are in communication of research
results and uncertainty. We include two example activities and a
detailed syllabus to promote the development of a shared library
of resources for teaching statistical thinking beyond first-year
courses.We conclude with a short synthesis of lessons learned in
the first few years of delivering our course, and a call for expand-
ing the domain of statistics to other courses and across commu-
nication platforms.

2. The Value of Teaching Statistical Thinking: Now is
an Opportunity

Our ideas build on the efforts of many to improve statistical
education. A conceptual framework for K-12 statistics educa-
tion aimed at enhancing existing mathematics standards was
produced in 2007 (Franklin et al. 2007). One of the stated goals
of this endeavor was that “every high-school graduate should be
able to use sound statistical reasoning to intelligently cope with
the requirements of citizenship, employment, and family and to
be prepared for a healthy, happy, and productive life.” Similarly,
a tremendous effort has gone into researching and providing
guidance for college-level introductory statistics courses. The
GAISE College Report lists “teach statistical thinking” as the
first of six recommendations for introductory courses (GAISE
College Report ASA Revision Committee 2016). And, the
American Institute of Biological Sciences (AIBS) 2015 report
on bioinformatics workforce needs recommended training that
includes the concept of the data lifecycle and project-based
learning (AIBS 2015). There is still much room for innovation,
particularly in integrating statistics and science. Statistics is
“vastly underappreciated because too few statisticians, relatively
speaking, have effectively conveyed the excitement of statistics,
as a way of scientific thinking” (Meng 2009). Our course focuses
on statistical thinking and, where possible, statistical wisdom
across the full domain of statistics from asking questions to
interpreting and communicating results. In so doing, it provides
a bridge between undergraduate statistics coursework and the
real-world application of statistical methods.

Teaching statistical thinking is not a new proposal. Twenty
years ago, Moore (1998) envisioned statistics as belonging to
the liberal arts because our discipline offers tools and ideas for
reasoning and a framework for evaluating evidence. Drawing
conclusions from observations and data, understanding varia-
tion, and reasoning about chance are essential skills for today’s
world. “We [statistics] offer broad and flexible modes of reason-
ing that make smart people smarter in every aspect of life and
work” (Moore 1998). He noted that the way we introduce the
discipline of statistics to the hundreds of thousands of students
who are subjected to a first-year statistics course every year is
both an opportunity to communicate the value of statistical
thinking and a public responsibility. We would add that similar
opportunities and responsibilities exist at the transition from
undergraduate study to graduate research and beyond.

In 1992, Cobb summarized three recommendations for
curricular change in statistics as identified by a Statistics Focus
Group on curricular action (Cobb 1992): (1) Emphasize sta-
tistical thinking; (2) more data and concepts: less theory, fewer
recipes; and (3) foster active learning. Under “Emphasize statis-
tical thinking,” the focus group included topics and principles
for classroom learning such as the need for real data, consider-
ation of how data are produced, the omnipresence of variability,
and the quantification and explanation of variability. We have
observed that, although the vast majority of statisticians agree
with these ideals, many sequences of coursework for statistics
majors fail in at least some of these and related elements.
Graduate students outside of statistics are rarely exposed to
these ideas at all and certainly not before they design their first
research project. It remains unusual that these topics are covered
explicitly, with the same depth or rigor of the technical content
for which our discipline is, perhaps incorrectly, better known.

The ASA Ethical Guidelines describe statistician’s respon-
sibilities to the public, research subjects, colleagues, other
statisticians, employers, and clients (ASA 2016). Strong statis-
tical thinking skills and an expanded concept of the domain of
statistics can help early-, mid-, and late-career statisticians meet
these ethical standards that include, for example, avoidance
of running multiple tests. By virtue of our experience, statisti-
cians also have an ethical obligation to students of all ages and
disciplines, an obligation to share and teach skills for critically
evaluating claims of new knowledge, making strong decisions
in the face of uncertain information, and avoiding egregious
errors in probabilistic thinking.

As a pointed example of our current failures, and at the risk
of drawing false conclusions from anecdotes, here is a short
story. One of us recently suggested to a student applying for
medical school that a good course in statistics was essential
for physicians. She replied that she had taken AP Statistics
in high school, that it was horrid, and that she had therefore
met her statistics coursework requirements forever. She had
no intention of ever taking another statistics course. Vaguely
horrified, we asked “How will you know whether to take newly
published research seriously and how will you know when to
change your ideas about the best treatments? And how will you
evaluate ..?” “Oh I know all that” she interrupted nonchalantly,
“just check the p-value.” This student might be making health
care decisions for you in 10 years.

The enthusiasm and energy surrounding this special issue
and the ASA’s Symposium on Statistical Inference, Bethesda,
MD October 2017, together with the following trends brings
unprecedented opportunity for change. The recent growth
in the number of undergraduate statistics majors makes this
an ideal moment in history to experiment with new course
offerings. From 2003 to 2011, there was a 78% increase in
bachelor’s degrees in statistics, biostatistics, and related fields
(Pierson 2013). We would expect the trend to continue as the
market demand for quantitative skills continues to increase.
The Bureau of Labor Statistics (2017) projected that the number
of statisticians would increase by 27% between 2012 and 2022,
while the general job market was only expected to grow by 11%
during that same time. There is, of course, expected to be a
large number of jobs in the general area of Big Data; Lund et al.
(2013) expect openings for nearly 200,000 people in this field.
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Table . Core Topics for an Advanced Course in Statistical Thinking.

Topics Detailed Understanding

Errors in thinking How the wiring of the human brain leads to incorrect conclusions from data.
Clear questions Quantifying the metric of interest in scientific questions.
Simulations Using simulations to understand the behavior and power of statistical procedures.
Estimation The advantages of estimation over testing for many common situations.
The p-value Understanding what it is, what it tells us, and what it does not tell us.
Repeated experiments Why results from a single study are inconclusive and how the scientific process is iterative.
The science process Pitfalls and opportunities of the project life-cycle and peer-review process.
Study design Principles of good study design and how poor design can lead to incorrect conclusions.
Sample size Issues with small samples and with big data. How these both can lead to incorrect conclusions.
Communication Principles of scientific communication and how they apply to statistics.

The analytics area, be it in business, sports, or criminology, is
seeing vastly increasing demand. The workforce a decade from
now will employ a large number of statisticians all of whom
must be able to both calculate to understand the context of their
analysis. As well, students now enter college having completed
math curricula withmore probability theory and early statistical
thinking skills than in the past, providing an “opportunity to
build on a broader foundation of prior knowledge that leaves
room to delve deeper and farther than ever before possible”
(GAISE College Report ASA Revision Committee 2016).

3. Structure of Our Course in Statistical Thinking

The course, focused on a set of core topics that move from how
the human brain works to statistical communication (Table 1),
is intended for senior statistics majors, though some sopho-
mores and juniors have enrolled, and anyone else interested in
conducting research (usually graduate students but we have had
some research-minded undergraduates from other disciplines).
In terms of their understanding of the role of statistics in sci-
ence, statistics senior undergraduates and, say, first-year ecology
graduate students are not so far apart. There are no mandatory
prerequisite courses, but some knowledge of standard statisti-
cal procedures, such as t-tests or linear regression, is strongly
recommended.We aim to reach students who think they under-
stand something about statistics and who are ready to think
hard about what they have yet to learn. We were proud when
one student described our course as having a “completely dif-
ferent framing than any other course: how to understand data,
how to filter out nonsense, how to navigate quantitative data.”

We interweave lectures, in-class activities such as analog sim-
ulations, for example, drawing marbles from a bag, discussion
groups, and computer labs. A key feature of the course struc-
ture is that all in-class work is done in assigned groups, which
are designed to mix students frommultiple disciplines, with dif-
ferent perspectives, and with a range of experiences. We have
observed that the broader the range of backgrounds, the more
effective the group dynamics. The application of statistical tools,
after all, requires both mathematical and non mathematical
knowledge (Kuzmak 2016). The students with domain-related
knowledge and experience are essential for helping the statis-
tics majors interpret results and engage in the exercises. Inter-
estingly, the number of statistics courses previously taken does
not seem to predict course performance. Students with lots of
procedural knowledge are not necessarily those with the inter-
est and ability to think about how those procedures can inform

our understanding of the world around us. The limiting fac-
tor for many students is confidence in R programming skills.
We design the groups to distribute the most experienced R pro-
grammers across groups. Sample code is always provided and
we have added a lab in the second week of the course specifically
designed to teach the bare bones of running simulations inR.We
also ask that the least experienced R programmer does the typ-
ing which keeps all students engaged, either typing or coaching.

The course is divided into three sections (see Table 2) which
form a story arc from how humans make observations to
making inference from observations to communicating what
has been learned. In the first section, Making Sense of Data,
we focus on the workings of the human brain and on sampling
distributions. We provide students with many examples to
demonstrate how easily we, as humans, are fooled by pattern
and coincidence (Tversky and Kahnemann 1974; Diaconis and
Mosteller 1989). And we argue that, by heightened awareness of
these common errors, we can avoid them. We also discuss big
ideas like confidence intervals, introduce simulations as a way of
learning and testing, and give students the quick overview of R
mentioned above. The second section, Using Data for Scientific
Understanding, is all about making inference. Students gain
experience through readings and exercises that increase their
understanding of p-values (as described in detail below) and
promote the idea that estimation is often a better approach
than testing. We help them identify when statistical testing is
appropriate and enable them to design their own randomization
tests to ask and answer exactly the question of interest. We also
discuss inference on a macroscale. How does science proceed
from an experiment in a lab to common understanding or
accepted truth? How does the peer-review process influence the
application of statistics? In the third section, Using Science in
Society, we focus on interpreting scientific claims (Sutherland
et al. 2013), communication of risk, communication with and
by the media, applications of statistical insight in controversial
topics such as climate change, and the ability (or lack of ability)
for scientific fact to change people’s minds about controversial
topics. Student understanding of the big ideas in the course
doesn’t happen all at once but through spiraling back to ideas
over and over again from different perspectives.

During the first half of the course, students are assigned both
readings (or similar activities) and R homework each week.
Assigned readings and activities range from original statistics
papers to science articles, magazine articles, blog posts, spurious
correlation and p-hacking simulators, and videos. Many of the
key readings are cited in this article. R homework generally
follows directly from the in-class labs. During the second half
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Table . Condensed syllabus for our -week course in statistical thinking.

Week Main Topic Example Lecture Modules

SECTION I: MAKING SENSE OF DATA

 How the human brain works, scientific
reasoning, & simulation thinking

Human judgement under uncertainty and common errors in statistical thinking. Interpreting patterns
visually then using physical and computer simulations to improve on that interpretation (Example :
Explain this … or that!).

 Coincidences, randomness, &
measurement (and an introduction
to R)

Frequency of coincidences and four main reasons for coincidence (with group discussion). Patterns
emerge from randomness. Basics of using R statistical software—particularly for simulations.

 Populations, samples, means, confidence
Intervals, & over-confidence

The difference between a sample and a population, sampling distributions. Understanding confidence
intervals, credible intervals, and prediction intervals. Over-confidence in the human brain and its
relationship to statistical thinking. Hands-on simulation of sampling with n=  versus n=  to
understand that the sample mean is random; how confidence intervals of the mean arise; and the role
of sample size (Figure ). Bootstrapping confidence intervals in R.

SECTION II: USING DATA FOR SCIENTIFIC UNDERSTANDING

 Comparing two populations Multiple ways to compare two populations using samples. What is the metric of interest? It is not always
the mean. Effect sizes and estimation. Hands-on permutation tests using paper data. Permutation
testing in R. Effect sizes in R.

 P-values A history of p-values. P-hacking: what is it and why does it matter? Peer review process and how it
influences abuse of p-values and significance testing. Students conduct simulation of a research study
famous for p-hacking to discover how it works and why is it so dangerous (Example : The Science of
Bad Science). Simulation experiments on p-values.

 The life cycle of science Statistical power. Using simulations to evaluate statistical power in R. How ideas are curated in science
and the crisis of replication. File drawer effect (Rosenthal ) and problems with p-values. Garden of
forking paths (Gelman ) and problems with multiple testing. Peer review in the context of the crisis
of replication. Proposed solutions to the crisis of replication (with group discussion).

SECTION III: USING SCIENCE IN SOCIETY

 Study design & Big data Students collect observational data on cell phone use while driving as pilot for a well-designed study.
Key principles of study design. A brief history of data. What is “Big Data”? Perils and opportunities of
big data. Student lab using Google trends to enrich group project.

 Statistical & scientific communication Communication of risk. Communicating science and statistics with the media. The role of the press
release. How twitter and social media influence science communication. Students work in groups to
evaluate a selection of science media reports. Science and statistical communication best practices.

 Application: Climate change research How does the Intergovernmental Panel on Climate Change (IPCC) work and what is the role of statistics?
Communication of risk and scientific evidence in controversial topics. Estimating and ranking global
mean temperature in R.

 Student project presentations Short summary presentation on best statistical practices (Table ).

of the course, students have very little programming homework
and, instead, work in groups on a final project to apply their new
understanding and communication skills in conducting statisti-
cal testing, drawing conclusions from data, and communicating
findings honestly yet with enthusiasm.

Final projects are delivered as oral presentations, newspaper
or magazine articles, and social media posts. These group
projects not only include real data but they apply to real-world
situations for which one truly seeks and cares about the answer
(Kuzmak 2016). The data are messy; the questions are poorly
specified; graphs must be designed to answer a question; and
t-tests are not allowed. Although each group project is designed
to cover the full spectrum of activities involved in using data to
answer a question, each project emphasizes a particular element
of the course from heuristics that lead to flawed thinking to
the perils of multiple tests to the challenges of communicating
exciting results with honesty. Past group projects have included
conducting a survey similar to that of Tversky and Kahneman
(1974) to reproduce and/or extend their results, for example
by comparing performance between statistics and nonstatistics
majors; exploring the first four years of data from a large Federal
research project on stream restoration in Alaska to provide the
researcherswith preliminary information relevant to their stated
research questions; re-evaluating an article inGrist claiming that

large snowstorms have becomemore frequent on the East Coast
using the data reported in the article and publicly accessible data
for several cities; and graphing downscaled climate hindcast
and forecast data for a watershed south of Bangkok, Thailand, to
provide insight about likely future changes in climate that would
be relevant to local farmers. In the final week of the course,
group project presentations are ordered so as to provide a fairly
organized review of the key messages and ideas in the course.
For example, the above projects would be presented in the order
described so as to cover typical human errors, matching analysis
to research questions, how the media communicates scientific
results, and communicating to particular stakeholder groups.
To avoid what might be seen as a cynical and depressing view
of all the opportunities to make mistakes, we also accumulate
a set of best statistical practices during the course. On the final
day, we review and distribute this succinct list of reminders for
conducting and consuming scientific analyses (see Table 3).

After taking our course, we expect students to have gained
(or sharpened) the following understandings and skills: (1)
the ability to identify and prevent common errors in thinking
that lead to erroneous conclusions; (2) the ability to match
a research question to a statistical procedure, including the
metric of interest; (3) the ability to create a bootstrap confidence
interval for a quantity of interest; (4) the ability to customize a
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Table . Best statistical practices: for implementation by undergraduates and early graduate students

Plot your data—early and often.
Understand your dataset as one of many possible sets of data that could have been observed.
Understand the context of your dataset—what is the background science and how were measurements taken.
Be thoughtful in choosing summary metrics.
Decide early which parts of your analysis are exploratory versus confirmatory and pre-register your hypotheses in your ownmind.
If you are going to use p-values, which can be useful summaries when testing hypotheses, follow these principles:

� Report estimates and confidence intervals;
� Report the number of tests you conduct (formal and informal);
� Interpret the p-value in light of your sample size (and power);
� Don’t use p-values to claim that the null hypothesis of no difference is true;
� Consider the p-value as one source of support for your conclusion not the conclusion itself.

Compute (and display) effect sizes and confidence intervals as an alternative to or in addition to statistical testing.
Consider creating customized, simulation-based statistical tests for answering your specific question with your particular dataset.
Use simulations to understand the performance of your statistical plan on datasets like yours and to test various assumptions.
Read with skepticism, remembering that pattern can easily occur by chance (especially with small samples), and that unexpected results based on small sample sizes
are often wrong.

permutation test for a comparison of interest; (5) the ability to
use simulations to conduct and evaluate statistical analyses; (6)
an understanding of how knowledge is curated and the role that
statistics plays in that process; and (7) skills for communicating
scientific and probabilistic information honestly and clearly.
We summarize our teaching philosophy as “building efficient
skepticism to improve the application of statistics in scientific
research.” By efficient, we intend to imply both that skepticism
should be a natural part of consuming scientific information and
also that it need not prevent the forward momentum of ideas.

Our course is called “So You Think You Can Do Statistics?”,
a pun on the TV show “So You Think You Can Dance?”, and has
been taught three times as a 3-credit, 1-quarter class at the Uni-
versity of Washington, cross-listed in Statistics and College of
the Environment. Student reviews have been exceptional. “The
most interesting stats class I’ve ever taken,” “It teaches things
that weren’t mentioned in a lot of theory classes,” “requires us
to think about the process of doing statistics,” “mostly it really
makes sense when you think about it, but youwould never think
about it on your own,” and “permutation tests are a Swiss-army
knife for designing statistical tests.” In 2017, 72% of students
ranked the course content as excellent and there was a request
to increase maximum enrollment for 2018.

By the very principles we teach, we can make no assessment
of the “significance” of our course. Early indications, however,
are positive. As a part of our course evaluation process, students
read and evaluated similar articles before and after the course.
Before our class, no students mentioned that they considered
the sample size or that they wished for confidence intervals in
their evaluations of these articles but, after the course, students
focused on these ideas. After the course, students were also con-
cerned about the influence of base rates, cherry-picking results,
and decisions about what was measured on the article’s final
conclusions. When asked anonymously what they would take
away from the course, undergraduate students wrote “Those
fallacies when interpreting those scientific news”; “Awareness
of common statistical pitfalls and bootstrapping. Specifically
knowing how easy it is to manipulate information to support
a desired outcome”; and “All of the things that we need to look
out for, and then just about how p-values aren’t the end all be all
of statistics like they’re made out to be.” Graduate students from
2018 described their learning informally as “I learned that even
published scientific studies should be taken with a grain of salt”
and “I feel that I will take a much more cautious approach to

analyses I will conduct in my own research, particularly when
it comes to choosing a particular analysis approach ahead of
time and sticking to it.” In the formal evaluation, one graduate
student wrote “Since beginning this class, I am definitely more
critical of every paper, article, or news story that I read. I always
check sample size, and then look to see if they report confidence
intervals or uncertainty. I have started to mistrust p-values and
have noticed the dependence on them in literature. I have tried
to decipher how much is communicated to the general public
versus the research community and how data is misconstrued.”
Whether this same wise skepticism is applied and retained in
the future remains to be seen.

4. Unusual Features of Our Course in Statistical
Thinking

There are similarities between our approach and the approaches
of others, including the GAISE recommendations for first year
courses in statistics (GAISE College Report ASARevision Com-
mittee 2016). Like others, we also hope our course is fun and
relevant to the daily life of students (Meng 2009), we encourage
effective graphing, and we discourage overreliance on statistical
testing.

Our course is, however, different from traditional statistics
courses in several ways. First, our course is predicated on the
idea that the biggest problems with statistics as currently practiced
are not in the details of the techniques (e.g., nonnormality, non-
constant variance, unaccounted for nonlinearity) but in the big
ideas surrounding application of statistical tools (e.g., how does
what you have measured relate to the subject of interest (sensu
Mallows 1998), the likelihood of observing strong patterns
by chance alone, the tendency to oversell novel results). Our
course therefore presents a body of knowledge not commonly
taught as a cohesive whole. As a result, and secondly, the course
is inherently multidisciplinary, including topics rarely covered in
Statistics Departments such as human psychology, communica-
tion, and peer review. Third, our course is intended as a bridging
course. It serves as a bridge between statistical knowledge and
successful application of statistics in science. We have found
that the sharing of experience across advanced undergraduates
and early graduate students enriches the learning outcomes for
both. Fourth, our course focuses on what can go wrong in the
application of statistics. Statistical tools are often taught within
a framework in which they are useful. We spend nearly equal
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time focusing on examples of when, how, and why application
of statistical tools go wrong. Fifth, our course considers how a
single analysis fits into the lifecycle of science. For example, we
explicitly consider the file drawer effect (Rosenthal 1979) and
the concept of the garden of forking paths (Gelman and Loken
2013), as well as the filtering that occurs during the peer-review
process. Sixth, we conduct experiments on p-values and explic-
itly discuss the replication crisis in science. Seventh, we devote
nearly 20% of the course to statistical communication including
activities such evaluating press releases, watching videos of
prominent statisticians explaining the demands of statistical
communication, and considering how social media magnifies
the pressure and opportunity for scientists to overstate their
claims. And, finally, we confront the messiness of data analysis
head-on. Subjective decisions are required at multiple steps
along the way and answers are not always conclusive.

A very similar course could be taught as a seminar in “How
science happens” to graduate students or as a capstone course
for statistics majors. Statistical capstone courses have been
designed in a variety of formats and often focus on large-scale
data analysis projects (Martonosi and Williams 2016). One
common format for a capstone course is an in-depth analysis of
real-world data embedded in an advanced methodology course.
As a capstone, our course would differ in its lack of emphasis
on advanced methods and in the focus of our final projects
on specifying the question of interest, identifying best metric
to answer the question, creating graphics that tell a story, and
communicating, even in the form of tweets and Facebook posts,
the scientific conclusion.

Three features of our course demand a more in-depth
explanation.

Simulations. Simulations can form a foundation for K-12
courses (Franklin et al. 2007), introductory college-level statis-
tics courses (e.g., Lock et al. 2013 and Tintle et al. 2015), and
advanced courses such as “Advanced Resampling Methods.”
Simulations give us a multipurpose tool to build intuition and
to create customized estimation and testing approaches that
would otherwise be difficult. We use simulations in four ways:
sampling from a population and observing the sampling distri-
bution of some quantity; sampling with replacement to estimate
a confidence interval; sampling without replacement to conduct
permutation tests; creating multiple datasets from known dis-
tributions to evaluate the performance of statistical procedures.

It is somewhat unusual that we pair analog and digital
simulations in order to build a deep, perhaps gestalt, sense of
how statistical processes work. In the first week (See Example
Exercise One), students draw marbles from a bag to simulate,
effectively, balls in urns and experience differences in the prob-
ability of extreme events with changes in sample size. We then
simulate that same experiment digitally in R (R Core Team,
2017). We bring a sampling distribution to life by calculating
the mean weights of Faux Fish (data printed on fish-shaped bits
of paper) in a pond (an envelope) from a sample of N = 3 Faux
Fish and then a sample ofN = 10 Faux Fish. Each mean value is
written on a small sticky note and used to build a histogram of
the results from all groups at the front of the room (Figure 1).

The Faux Fish exercise is taken from a curriculum aimed
at middle school students (Kelsey and Steel 2002) but it is
also effective and powerful for advanced students and even

Figure . Visualizing sampling distributions using analog simulations: (a) histogram
of weights of all Faux Fish in a pond; (b) sampling distribution of the mean of sam-
ples of size n = ; (c) sampling distribution of the mean of samples of size n = .
The arrows correspond to the true mean from (a). Photos by E. A. Steel.

practicing professionals. There is something magical about
watching a sampling distribution materialize, just as expected,
as a result of random chance. We then simulate that exact same
experiment digitally. Students also conduct a permutation test
by physically cutting off data labels and permuting the data
values, building a null model at the front of the room by graph-
ing class results in real time. Of course, permutation tests are
then conducted with a much higher sample size in R. With this
foundation in simulation thinking, students go on to use simu-
lations to evaluate the performance of p-values under a variety
of situations (see Example Exercise Two), compute statistical
power, and compare the performance of testing procedures
under various conditions.

P-values. Because we are proposing our course, and other
courses like it, as one part of the prescription for a post p< 0.05
world, it is important to describe what and how we teach
students specifically about p-values. In week four, we introduce
the idea of a p-value without naming it. When we permute
data after cutting off the labels, as described above, we build a
histogram of the distribution of the difference between group
means under a null hypothesis of “no difference between the
group means.” We then ask the students, “what percent of the
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time did we see a difference between group means as extreme
or more extreme than the difference we actually observed in
the original data?” And, we have a short discussion about what
we conclude given the observed data and the histogram of the
null distribution still without naming the idea as a p-value.
Although many students are familiar with p-values, this way of
approaching it is new to most of them.

We then begin week five with a 20-min lecture on the history
of p-values, starting with a definition from Karl Pearson (Pear-
son 1900) and eventually comparing and contrasting Ronald
Fisher’s testing approach (Fisher 1925) with that of Jerzy Ney-
man and Egon Pearson (Neyman and Pearson 1933).We remind
students that the p-value is a random variable and explain that,
under the null hypothesis, the p-value has a uniform distribu-
tion. We spend time considering how likely a probability of 0.05
really is. Most students have played games of chance in which
rolling two die and getting two sixes is an exciting but relatively
common outcome. A p-value of 0.05 is nearly twice as likely!
Students then enjoy The Chocolate Lab (see Example Exercise
Two) which should reinforce a growing understanding about
how p-values can be misused and misunderstood. For home-
work, students conduct one of five simulation experiments on
p-values. The experiments build intuition about how p-values
behave when the null hypothesis is true; distinguish between
statistical and practical significance; determine how effect size
and sample size influence the probability of rejecting; estimate
the probability that the null hypothesis is true when you have
andwhen you have not rejected; and demonstrate that when you
reject with low power, the observed difference in means is likely
much higher than the true difference in means. Students report
out the results of their experiments in the following class so that
all students can learn from all five experiments. Finally, we talk
extensively about how to communicate to scientists, journalists,
or user groups such as farmers, the results of statistical analyses
when p-values are small and when they are not.

Limiting our course to two-sample comparisons. There is
surprisingly little time in a semester course. Teaching multiple
techniques or covering a range of complex applications does
not leave enough time for big picture ideas on which we want to
focus our efforts; therefore, we have made thoughtful tradeoffs
and exclusions. For example, we limit our formal lectures and
exercises to the comparison of samples from two populations
using graphs, estimation, and permutation tests. This allows us
to build on knowledge of t-tests, which almost all our students
have been introduced to in past coursework, create manageable
simulations, and explore parallels across examples. Most of the
skills and big ideas are relevant beyond applications that com-
pare two samples, for example identifying the relevant measure
to compare, bootstrapping a confidence interval for an effect
size, or limiting the number of tests. Student projects generally
involve comparisons between many groups and the students
have had no problem extending the ideas to this expanded sit-
uation. Occasionally, we do touch on linear regression because
many students have been exposed to it in past coursework. For
example, students simulate the distribution of r-squared values
for linear regressions when there is no effect, and students who
are particularly comfortable with linear regression sometimes
bring it to their group projects. In this case, they might create a
scatterplot, fit a regression line, and bootstrap a confidence inter-
val for the regression coefficient. Beyond permutation tests, we

do not teach any new statistical testing procedures. Although
our focus on two-sample situations could be perceived as a
limitation of our course, we prefer to think of it as a feature of
our course. There are lots of courses that teach statistical tools.
Our course teaches students about issues and opportunities
that arise when applying a single, simple tool, and by extension
many other statistical tools, to generate new knowledge.

5. Example Activities to Promote Statistical Thinking

We challenge students to think deeply about their own cogni-
tive biases, issues that arise in the application of statistical test-
ing, types of statistical mistakes that are most common, and
the cumulative effect of those mistakes. Some of our exercises
include a surprise so that students are forced to face their own
propensity for error.We describe two such exercises here as they
may be particularly useful for other courses orworkshops.Other
course exercises focus on activities such as writing R code to cre-
ate bootstrap confidence intervals, permutation tests, and power
analyses or even collecting small datasets as an opportunity to
consider the effect of study design on study conclusions.

Example Activity 1: Interpret this … and that! The perils of small
samples and how strong patterns arise by chance alone.

We begin this activity on the second day of the course. Stu-
dents sit in mixed groups, statistics students with students from
other disciplines, undergraduates and graduate students, R pro-
grammers and the computer-phobic. Each group is given a paper
to direct their discussion.Half of the groups are given the follow-
ing statement “Kidney Cancer across America: A study of new
diagnoses of kidney cancer in the 3141 counties of the United
States reveals a remarkable pattern. The counties in which the
incidence of kidney cancer are lowest are mostly rural, sparsely
populated, and located in traditionally Republican states in
the Midwest, South, and West. Think about these findings and
identify three likely explanations.” Unknown to the students,
half of the groups are given the opposite statement in which
kidney cancer are highest in rural counties. After the students
generate ideas in their small groups, we open a discussion by
making a list on the white board of “likely explanations for these
observations.” The students generate explanations ranging from
themagic of amore natural environment to the perils of agricul-
tural chemicals and from access to smaller hospitals to lack of
access to high-end hospitals. Because the students are unaware
that groups were given different information, discomfort grows.
The list of answers stops making sense; time for the class runs
out; and we remind students to complete the assigned reading.

Assigned reading after this exercise includes “The most dan-
gerous equation” (Wainer 2007), “The most dangerous hospital
or the most dangerous equation?” (Tu and Gilthorpe 2007), a
press release for a $25M grant to create smaller schools across
Oregon State (Bill and Melinda Gates Foundation Press Room
2003), and a news article from the Washington Post about the
fallacies of the Gates Foundation small schools initiative and the
dollars potentially wasted (Strauss 2014). In the first reading,
Wainer explains the kidney cancer example with a beautifulmap
that shows both the highest and the lowest kidney cancer rates
in rural counties. Of course, where you have fewer residents you
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Figure . Simulated county cancer rates as a function of county population size
using a fixed kidney cancer rate. Results demonstrate that, although the cancer rate
in these simulations is the same in every county, by chance we will observed the
highest and lowest county cancer rates in the counties with the fewest people.

have smaller sample sizes; you are, by chance alone, likely to see
more extreme results.

When the students return to class, they are provided with
a bag of marbles in which there are 40 red marbles and 40
clear marbles, our “balls in urns.” Students take samples of size
N = 7 marbles and record how many times they get an extreme
event, defined as all the marbles are the same color. There
are few extreme events. The exercise is repeated for samples
of size N = 4 marbles and there are, as expected, many more
extreme events. Class results are combined and we calculate the
probability of the extreme event when you draw 4 marbles and
the probability of the extreme event when you draw 7 marbles.
What’s the answer? For n = 4, p = 0.125. Not really all that
unlikely. For n = 7, p = 0.0156. Rare!

We then turn the discussion back to the kidney cancer rates
and the effect of sample size on the probability of extreme events
which, in that case, were high or low kidney cancer rates. Stu-
dents learn that all groups were actually given correct informa-
tion. We discuss the ease with which the human mind is fooled
by pattern and refer back to several of the System 1 shortcuts
described by Tversky and Kahnemann (1974) which students
had read earlier. We also comment on how willingly and confi-
dently each group had created a story to explain an observed pat-
tern. We then simulate the pattern in R by assuming a constant
disease rate and applying it to county population data from the
U.S. Census Bureau (https://www.census.gov/data/tables/2016/
demo/popest/counties-total.html) (Figure 2). We demonstrate
to the students that, by chance alone, we nearly always see the
highest and lowest disease rates in the smallest counties.

Example Activity 2: The science of bad science. How you too can
fool the world into thinking almost anything.

Wewelcome the students to class with local chocolate, “Good
news. This is healthy so enjoy!” The students, if they have done
the reading, should be in agreement. We had asked them to
read “Chocolate with High Cocoa Content as a Weight-Loss

Accelerator” (Bohannon et al. 2015). We put up a nice slide full
of happy headlines reporting on the joy of chocolate as a new
weight loss tool and we pull out the bare bones of the methods
for the students.

The next step is to create a null model of the experiment.
What would these results be expected to look like by chance
alone? Students are given guidance and snippets of R code
to simulate a simplified version of this study in which the
researchers compared 18 responses of a small number of partic-
ipants to a diet that included chocolate versus a diet that did not.
Using this null model, students simulate the frequency of a par-
ticular significant effect (e.g., weight change), the frequency of
any significant effect, the frequency of a significant effect when
one outlier is removed (as was done in the study), the distribu-
tion of simulated effect sizes for those datasets in which the null
hypothesis was rejected (as compared to the known, simulated
effect size), and the number of study subjects that might truly be
necessary to detect such a small difference. Note that statistical
power is not formally introduced until the following week.

We then read the article “I fooled millions into thinking
chocolate helps weight loss. Here’s how,“ a blog post by lead
author, John Bohannon (Bohannon 2015). “The study was
100 percent authentic. My colleagues and I recruited actual
human subjects in Germany.We ran an actual clinical trial, with
subjects randomly assigned to different diet regimes. And the
statistically significant benefits of chocolate that we reported
are based on the actual data… It was terrible science. The
results are meaningless, and the health claims that the media
blasted out to millions of people around the world are utterly
unfounded. Here’s how we did it…”

Ensuing class discussions are fun. A few of the more
advanced studentswere a little skeptical of thewhole process and
knew intuitively where this was going but few had understood
the details of how it works, from the perils of the statistical pro-
cess to entrancing the media.We explain that any one particular
statistical test worked correctly and the odds of observing any
one particular outcome, for example, a loss of weight, was just
0.05. But the overall odds of finding something “surprising” is
very highwhen there aremultiple tests and higher still when you
make decisions such as systematically deleting a type of outlier.

This exercise, coming at the center of the course, reflects back
on earlier exercises in which students competed in teams to
identify neat patterns in data (which turned out to be randomly
generated) and were quickly willing to oversell their “findings”
and it opens up deep topics about the lifecycle of science,
how the peer review process really works, issues embedded in
working with the media, and the importance of clear scientific
communication. As well, the exercise builds intuition about the
value of a null model and it arms students with simulation skills
(and sample code) for evaluating the behavior of various testing
procedures as part of their final project.

6. Conclusion

A course in statistical thinking that considers the full domain of
statistics is fundamentally different from a traditional statistics
course. First, the errors of concern in statistics courses are often
errors in calculation, which are only one of the many kinds
of statistical mistakes that can lead to poor science and bad
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decision-making. A large proportion of statistical mistakes
result from incorrect logic or interpretation despite correct
numerical calculations (Steel et al. 2013; Leek and Peng 2015).
Second, the course must weave in content not traditionally
taught in statistics departments. Few courses train students to
understand the role of statistics in the scientific process. We
argue that, if more scientists and statisticians had a clearer
understanding of these interactions, there would be fewer flaws
in how the scientific method is applied and we would be taking
a big step in moving beyond the “bright line rule” of p< 0.05.

To think statistically is to think in distributions and probabil-
ities and also to understand the role of statistical analysis within
the greater machinery of generating scientific knowledge. A
course in statistical thinking can use simulations to understand
the role of chance in creating patterns, the importance of ran-
domness inmaking inference from a sample to a population, the
multiple ways of quantifying uncertainty, and the host of poten-
tial errors that can occur when conducting statistical tests. Such
a course also needs to speed up the process of building statistical
wisdom about how things can go wrong in the integration of
mathematical and nonmathematical knowledge. Understanding
how human fallaciesmake particular statistical errors very likely
can be a foundation of such wisdom. Activities that surprise
students or lead them to question their understanding of statis-
tics provide benchmark lessons that students are likely to refer
to as practicing statisticians and scientists. Teaching statistical
thinking and teaching across the full domain of statistical con-
tent is challenging. It requires that we share success stories, great
teaching examples, teaching resources, and teaching mistakes.
A shared library of resources, for example, would be a great help.

In teaching the course, we have learned a good deal about
how to develop deeper statistical skills. First, students need to
understand how pervasive problems in statistical intuition are
and they need to be convinced that they too make predictable
errors. We achieve this by a precourse survey that includes a few
questions even trained statisticians often get wrong and a few
carefully structured trick examples as described above. Second,
students need a gut-level understanding of statistical topics,
and this gut-level understanding can best be achieved through
simulation. In order to understand sampling distributions, they
need to take samples inmanyways and observe the outcomes. In
order to group how p-values do and don’t work, students need to
experience for themselves significant results that are generated
from noise. Third, students need both positive and negative
examples. In our first year, we had fun presenting dozens of
flawed papers, only to realize that we had left students without
confidence in the best practices we were promoting. Our short
list of best practices (Table 3) has helped students envision how
to make improvements in the system. Fourth, students need
real datasets of which to ask real-world questions (Willet and
Singer 1992; Neuman et al. 2013). Only through this process
can students struggle with all the steps in the scientific lifecycle,
from how to refine a question and how to best summarize data
in a way that answers it, to how to make an informative graph
andwhen to stop searching for patterns. Fifth, we limit lecturing
through increased use of group discussions and hands-on activ-
ities. Thinking skills need to be practiced, not just preached.

Courses dedicated to statistical thinking are essential and
fun, but there are many other opportunities to inject statistical

thinking and wisdom into the education and minds of future
lawyers, politicians, parents, investors, and even data scien-
tists. There are engaging statistics courses that bring statistical
thinking into daily life, such as Stat 105 at Harvard University,
“Real Life Statistics: Your Chance for Happiness (or Misery)”,
that arranges course content into real-life applications (Meng
2009). As well, there are myriad opportunities for speaking on
these topics beyond traditional statistics curriculum or statistics
departments. Big ideas in statistical thinking can also be pre-
sented as single lectures in topical undergraduate or graduate
courses, as guest presentations in your local high school, and
even anecdotally in talks presented at professional societies.

Teaching statistical thinking and explaining the integration
of statistics in the scientific process is an essential part of repair-
ing our scientificmachinery. It doesn’t stopwith one new course.
If we had the opportunity to teach for an additional quarter,
we could design and add activities that add similar depth to
linear regression and we would dedicate more time to principles
of sampling design (what works and what can go wrong), the
art of reviewing science papers (formally and also informally),
and science journalism. Workshops for a range of practicing
professionals and even for the general public would also be
incredibly valuable: “Five statistical red flags: A workshop for
managers who rely on the best available science to make deci-
sions” or “Better living through statistics: A whirlwind tour of
how big ideas in the quantitative world can help youmake better
decisions on everything fromwhether to buy travel insurance to
whether to get a mammogram.” Through increased promotion
of these ideas beyond academia, future physicians might be
better equipped to evaluate new research, future judges might
be less susceptible to the negative effect fallacy (Enos et al. 2017;
Fowler 2017), and future charitable foundation leaders might
be more skeptical of interesting patterns (Bill and Melinda
Gates Foundation Press Room 2003). Formally and informally,
teaching statistical thinking is, perhaps, our biggest, best, and
easiest opportunity to make a positive impact.
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